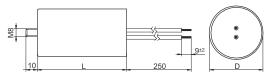

SYSTEM-OPTIMISING COMPENSATION

PARALLEL CAPACITORS

Capacitors are designed to compensate inductive reactive current of discharge lamps in 50/60 Hz networks when operated with electromagnetic ballasts. As required by utility companies, capacitors serve to compensate the reactive current generated by the respective ballast. A power factor of $\lambda \ge 0.9$ is achieved.

In addition, capacitors can also be used to compensate or generate phase displacements. Careful selection of the raw materials as well as special thermal treatment of the capacitor coil guarantee a long servicelife and stable capacitance.

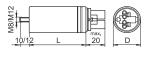

Parallel capacitors	146-147
Technical details for parallel capacitors	148-155
General technical details	228–236
Glossary	237–239

Parallel Connected Capacitors with Leads 250 V, 50/60 Hz

Capacitors type A

Casing: plastics, white Fastening: male nipple M8x10 with nut and washer included Discharge resistance Leads: H05V2U 0,5 mm², length: 250 mm

Ref. No.	Capacity	Temperature range	Ø (D)	Length (L)	Male nipple/	Weight	Packaging unit
	μF (±10%)	°C	mm	mm	length (mm)	g	pcs.
571653	2.5	-25 to 85	30	55	M8x10	26	350
526169	4.0	-25 to 85	30	55	M8x10	27	350
571654	4.5	-25 to 85	30	55	M8x10	27	350
526170	6.0	-25 to 85	30	55	M8x10	28	350
526171	8.0	-25 to 85	30	55	M8×10	35	350
571655	9.0	-25 to 85	33	63	M8x10	40	250
529665	10.0	-25 to 85	33	63	M8x10	42	250
526172	12.0	-25 to 85	33	63	M8x10	45	250
543402	13.5	-25 to 85	33	63	M8x10	47	250
529666	16.0	-25 to 85	40	63	M8x10	61	200
551644	18.0	-25 to 85	40	63	M8x10	65	200
528552	20.0	-25 to 85	40	63	M8x10	69	200
508484	25.0	-25 to 85	40	63	M8x10	71	200
536743	30.0	-25 to 85	45	88	M8x10	95	120
528554	35.0	-25 to 85	45	88	M8x10	105	120
571656	40.0	-25 to 85	45	88	M8x10	113	120
528555	45.0	-25 to 85	45	88	M8x10	123	120
571657	50.0	-25 to 85	45	88	M8x10	127	120
571658	55.0	-25 to 85	50	94	M8x10	147	100
571659	60.0	-25 to 85	50	94	M8x10	157	80
571660	65.0	-25 to 85	50	94	M8x10	167	80


Parallel Connected Capacitors with Break-action Mechanism

Capacitors type B

Casing: aluminium Filling material: based on vegetable oil Fastening: male nipple with nut and washer included Discharge resistance Overpressure protection On request further capacities or connectors

A Push-in twin terminals 0.5–1 mm^2

Ref. No.	Capacity	Temperature range	Drawing	Ø (D)	Length (L)	Male nipple/	Weight	Packaging unit
	μF (±10%)	°C		mm	mm	length (mm)	g	pcs.
250 V, 50/	60 Hz	·	· · · · · · · · · · · · · · · · · · ·			·		,
536379	4.0	-40 to 100	A	30	60	M8x10	35	144
536380	6.0	-40 to 100	A	30	60	M8x10	40	144
536381	8.0	-40 to 100	A	35	72	M8x10	42	144
536382	10.0	-40 to 100	A	35	72	M8x10	46	144
536383	12.0	-40 to 100	A	35	72	M8x10	49	144
536386	18.0	-40 to 100	A	40	72	M8x10	76	105
536387	20.0	-40 to 100	A	40	72	M8x10	80	105
536388	25.0	-40 to 100	A	40	72	M8x10	82	105
536389	30.0	-40 to 100	A	40	97	M8x10	101	96
536390	32.0	-40 to 100	A	40	97	M8x10	105	96
536392	40.0	-40 to 100	A	45	97	M8x10	132	70
536393	45.0	-40 to 100	A	45	97	M8x10	142	70
536394	50.0	-40 to 100	A	45	97	M8x10	150	70
536396	60.0	-40 to 100	A	45	121	M8x10	175	35
537058	65.0	-40 to 100	В	60	105	M12x12	201	36
506360	85.0	-40 to 100	В	60	130	M12x12	248	36
506363	100.0	-40 to 100	В	60	130	M12x12	286	36
Ref. No.	Capacity	Temperature range	Drawing	Ø (D)	Length (L)	Male nipple/	Weight	Packaging unit
	μF (±10%)	°C		mm	mm	length (mm)	g	pcs.
450 V, 50/	60 Hz							
536400	32.0	-40 to 100	A	45	97	M8x10	179	70
536401	37.0	-40 to 100	A	45	97	M8x10	200	70
536402	50.0	-40 to 100	В	45	121	M8x10	360	35
536404	60.0	-40 to 100	В	60	130	M12x12	270	36
536405	85.0	-40 to 100	В	60	130	M12x12	420	36

M12

12

1(

5

4 Capacitors for Fluorescent and Discharge Lamps

149
150
150-152
152-154
154-155
228-236 237-239

Technical Details – Capacitors for Fluorescent and Discharge Lamps

Compensation of idle current

When using magnetic ballasts a phase shift occurs between the mains voltage and the current drawn. This phase shift is expressed by the power factor λ , which generally ranges between a value of 0.3 and 0.7 with inductive circuits.

As a result of this phase shift, idle current, which does not boost the efficiency of the lighting unit, is also taken up from the power supply network in addition to real power. Power utility companies therefore require an increase of the power factor to values of over 0.85 for systems exceeding a certain rating (usually upwards of 250 VV per external conductor).

Compensation capacitors are used to counteract idle current (by increasing the power factor) and can be connected either in parallel or in series.

Thanks to a power factor of approx. 0.95, electronic ballasts do not need to be operated with compensation capacitors.

Compensation using series capacitors

Series compensation employs a so-called dual circuit (two fluorescent lamp circuits connected in parallel), whereby the capacitor, which is connected in a branch of the circuit, over compensates the inductive idle current to such an extent that it covers the idle current of both ballasts. This type of circuit is only used with fluorescent lamps. As series capacitors are dimensioned for nominal-voltage and ballast tolerances, the lamp in the capacitor branch of the dual circuit operates with a higher current and thus also with a higher rating. Apart from differences in lamp brightness, the power loss in the circuit branch with the capacitor will also be greater.

An advantage of the dual circuit is that it prevents the radiated light from flickering.

The higher current in the so-called capacitive lamp circuit causes an up to 14% increase in lamp rating and a reduction of the lamp service life by as much as 20%. This goes hand in hand with substantial technical, ecological and economic disadvantages.

Series capacitors have to meet very high technical requirements to suit various aspects like temperature, nominal voltage, tolerances of the capacitance values, etc.

As defined by EC directive 2000/55/EC (European Standard EN 50294 governing the measurement of total power consumption), a series capacitor is considered to be a part of the ballast. If the system rating of the capacitive circuit containing the lamps and ballasts is then determined in line with the above definition, rating increases of up to 14% will become apparent in comparison to operation without a series capacitor. Experience has shown that this increased power consumption often means devices fall in the directive's "banned" category. It is therefore strongly advised that due consideration be given to the elevated power consumption values common to using series capacitors for compensation purposes.

Series compensation in a branch of the dual circuit with a series capacitor, magnetic ballasts and starters

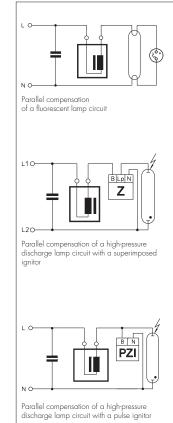
Parallel compensation

During parallel compensation, each lamp circuit is assigned to a capacitor connected in parallel to the mains. Only one capacitor providing sufficient capacitance is needed for luminaires with several lamps. Parallel compensation does not affect current flow through a discharge lamp. The requirements placed on parallel capacitors are clearly lower than those for series capacitors.

However, parallel compensation can be subject to limitations when using audio-frequency ripple control pulses if the system operates with a connected rating of over 5 kVA and ripple control frequencies of over 300 Hz are used. The respective power utility company should be consulted for advice in such cases.

Parallel compensation is used in fluorescent lamp and high-pressure discharge lamp circuits.

As parallel compensation offers substantial advantages, this has become the accepted method in the last few years.


Metallised polypropylene film capacitors

Metallised polypropylene film capacitors are designed to compensate the inductive idle current drawn by discharge lamps (fluorescent lamps, high-pressure mercury vapour lamps, high-pressure sodium vapour lamps and metal halide lamps with a ceramic discharge tube) in 50 Hz/60 Hz grids. All Vossloh-Schwabe compensation capacitors for luminaires feature a metallised polypropylene film dielectric. Compensation capacitors help to increase the power factor to values of over λ 0.85 as required by power utility companies.

Construction of metallised polypropylene film capacitors

VS MPP capacitors contain a low-loss metallised polypropylene film dielectric, which is produced by depositing a thin layer of zinc and aluminium or pure aluminium vapour onto one side of the polypropylene film. The contacts at either end of the capacitor coil are created by spraying on a layer of metal and thus guarantee a high current-carrying capacity as well as a low-inductive connection between the terminals and the coils.

All capacitors with a nominal voltage upwards of 280 V are filled with oil or resin after the coils have been inserted and then hermetically sealed. This protects the coils from environmental influences and reduces partial discharge, which contributes to a long service life and stable capacitance. The effects of partial discharge only play a minor role for capacitors with a nominal voltage of under 280 V so that these devices do not need to be filled.

Technical Details – Capacitors for Fluorescent and Discharge Lamps

Hermetically sealed, filled capacitors with an overpressure contact breaker should always be used in critical ambient conditions (high humidity, aggressive atmospheres, high temperatures), if the workload and power supply conditions are unknown as well as in situations that demand increased attention to safety.

VS MPP capacitors feature a self-healing dielectric. In the event of a dielectric breakdown in the coil (short circuit), the metal coating vaporises around the breakdown site owing to the high temperature of the transient arc that is produced. Owing to the excess pressure generated during such a breakdown, the metal vapour is pushed outwards away from the centre of the site within the space of just a few microseconds. This creates a coating-free corona around the breakdown site that completely isolates it and means the capacitor remains fully functional during a dielectric breakdown.

The self-healing properties of a capacitor can decrease with time and with constant overloading. This bears the risk of a non-healing breakdown with a permanent short circuit. Therefore self-healing must not be confused with failsafe.

Compensation capacitors are divided into two type families (A and B) in accordance with IEC 61048 A2.

• Type A capacitors defined:

"Self-healing parallel capacitors; without an (overpressure) contact breaker in the event of failure". They are referred to as unsecured capacitors.

Type B capacitors defined:
 "Self-healing capacitors for series connection in lighting circuits or self-healing parallel

capacitors; with an (overpressure) contact breaker in the event of failure". These are referred to as hermetically sealed, secured capacitors.

In accordance with the standard, the discharge resistor of both capacitor families must be capable of reducing capacitor voltage to a value of under 50 V in the space of 60 seconds after disconnection from the mains.

Capacitors without a contact breaker, unsecured, Type A capacitors in accordance with IEC 61048 A2

IEC 61048 A2-compliant Type A capacitors are self-healing and require no short-circuit protection for normal operation.

Type A capacitors are not fitted with a specific failsafe mechanism as prescribed by the standards for Type B capacitors. Nevertheless, the requirements laid down in the standard for Type A capacitors, especially with regard to temperature and service life tests, are designed to ensure a sufficient degree of device safety and availability **provided the device was correctly installed and operated under calculable and known ambient operating conditions**.

Even so, in very rare cases these capacitors can still develop erratic behaviour due to overloading or at the end of the device's service life.

For that reason, Type A capacitors should only be integrated into luminaires for operation in ambient conditions that are uncritical with regard to flammable materials. Luminaires should feature protection against secondary damage inside and outside the luminaire in the event of a defect.

Capacitors with a contact breaker, secured Type B capacitors in accordance with IEC 61048 A2

Self-healing capacitors do not require short-circuit protection for normal operation as they automatically regenerate after a dielectric breakdown. However, as a result of frequent self-healing caused by overloading (voltage, current, temperature) or towards the end of the capacitor's service life, overpressure can build up inside the capacitor (due to the decomposition products of the vaporised polypropylene).

In order to prevent the capacitor casing from exploding in such cases, hermetically sealed capacitors in accordance with IEC 61048 A2 (Type B capacitors) are fitted with an overpressure contact breaker. If excess pressure builds up within these capacitors, e.g. due to undue thermal loading or excessive voltages or at the end of the capacitor's service life, a concertina section opens out that causes the casing to expand lengthways. As a result, the wire contacts rupture at a predetermined breaking point, which irreversibly interrupts the current (contact breaker).

This type of overpressure-protected capacitor with a contact breaker is also referred to as a flame- and explosion-proof capacitor with a break-action mechanism.

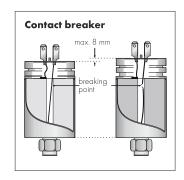
Type B capacitors with a contact breaker are available in an aluminium casing.

Assembly Instructions for Capacitors

For mounting and installing compensation capacitors

Mandatory regulations

DIN VDE 0100	Erection of low voltage installations
EN 60598	Luminaires – part 1: General requirements and tests
EN 55015	Maximum values and testing methods for radio disturbance of electrical lighting facilities and similar electrical equipment
EN 61000-3-2	Electromagnetic Compatibility (EMC) – part 3: maximum values – main section part 2: maximum values for mains harmonics (ballast input current up to and including 16 A per conductor)
EN 61048	Operating devices for lamps – capacitors for fluorescent lamp circuits and other discharge lamp circuits; general and safety requirements
EN 61049	Operating devices for lamps – capacitors for fluorescent lamp circuits and other discharge lamp circuits; performance requirements


Mechanical mounting

Fastening	Base screw (permissible torque):
	 M8x10 – 5 Nm (aluminium casing)
	 M8x10 – 2.2 Nm (plastic casing)

Mounting location

Any

Capacitors fitted with overpressure protection require clearance of at least 10 mm above the contacts so ensure the casing can expand unhindered if the contact breaker is triggered.

Technical Details – Capacitors for Fluorescent and Discharge Lamps

Heat transfer	Capacitors should be mounted with the greatest possible clearance to heat sources or lamps. During operation, the temperature measured at the $t_{\rm C}$ point must not exceed the specified maximum value.
t _c point	The $t_{\rm c}$ point is defined as an arbitrary point on the surface of the capacitor, which is not specifically marked.
UV Radiation	Capacitors should not be installed in an unprotected manner directly next to any sources of light, heat radiation or convection (ballasts, lamps, heating elements, etc.) as both high temperatures and constant exposure to UV radiation can lead to premature ageing. In combination with high temperatures, UV radiation or other substances and influencing factors, chemicals such as ozone and chlorine can lead to accelerated ageing and material embrittlement.
Thermal load	All capacitor casings are made of flame-retardant materials. However, the potting material, oils and the winding material are flammable and consideration must be taken of this fact during installation. The thermal load of an MKP capacitor is approx. 40 MJ/kg.

Safety functions

Type A capacitors

are not fitted with any special protective functions in case of defect. Temperature-protected capacitors are a further development of Type A capacitors and feature a thermal fuse that is triggered by excess temperatures and disconnects the capacitor from the mains.

Type B capacitors

are fitted with an overpressure contact breaker in case of defects at the end of the capacitor's service life.

Connection Parallel capacitors for fluorescent lamps:

- Casing diameter 25–30 mm: push-in terminals for 0.5–1 mm² conductors
- Casing diameter > 30 mm: push-in terminals for 0.5–1 mm² conductors

Parallel capacitors for high-pressure lamps:

- Casing diameter 25–30 mm: push-in terminals for 0.5–1 mm² conductors
- Casing diameter > 30 mm: push-in terminals for 0.5–1 mm² conductors

Reliability and service life

Provided the max. specified voltage and current loads, temperature, humidity and mains harmonics values are observed,

- approx. 50,000 hours for overpressure-protected parallel capacitors
- approx. 30,000 hours for parallel capacitors without overpressure protection in a plastic or aluminium casing

A 3–10% decrease in capacitance must be expected in the course of the capacitor's service life. Failure rate: 1‰ per 1,000 operating hours when maximum voltage, current and temperature values are not exceeded.

Electrical installation

Nominal voltage 250 V, 50/60 Hz; 450 V, 50/60 Hz (dependent on type)

Capacitance tolerance

±10% (±5% dependent on type)

Temperature range

-25/-40 °C to +85/+100 °C (dependent on type, details see product page)

Optional thermal fuse

Relative humidity Class F for Type B capacitors: 75% annual mean, 95% peak value on 30 days Class G for Type A capacitors: 65% annual mean, 85% peak value on 30 days

Condensation Impermissible

Capacitors for fluorescent lamp circuits

Lamp		Parallel compensation capo	acitor (µF ±10% at 250 V)
Output	Туре	220-240 V/50 Hz	220–230 V/60 Hz
W.		μF	μF
4	Т	2**	2**
6	Т	2**	2**
8	Т	2**	2**
10	Т	2	2
13	Т	2	2
14	Т	4.5	4.5
15	Т	3.5 or 4*	3 or 4*
16	Т	2	2
18	Т	4.5 or 4*	4**
20	Т	4.5 or 4*	4**
23	Т	3.5	3
25	Т	3.5	3
30	Т	4.5	4
36	Т	4.5	4
36-1m	Т	6.5	-
38	Т	4.5	4
40	Т	4.5	4
42	Т	6.5	-
58	Т	7	6
65	Т	7	6
70	Т	6	
75	Т	6	-
80	Т	9	8
85	Т	8	6.5
100	Т	10	9
115	Т	18	16
140	Т	14	14
160	T	14	14
16	T-U	2	2
18/20	T-U	4.5 or 4*	4**
36/40	T-U	4.5	4
58/65	T-U	7	6
22	T-R	5	4.5
32	T-R	5	4.5
40	T-R	4.5	4

Lamp Parallel compensation capacitor (µF ±10% at 250 V)				
Output	Туре	220–240 V/50 Hz	220–230 V/60 Hz	
\otimes		μF	μF	
5/7/9/11	TC-S	2**	2**	
10	TC-D/TC-T	2	2	
13	TC-D/TC-T	2	2	
18	TC-D/TC-T	2	2	
26	TC-D/TC-T	3.5	3	
10	TC-DD	2	2	
16	TC-DD	2	2	
21	TC-DD	3	3	
28	TC-DD	3.5	3	
38	TC-DD	4.5	4	
18	TC-L/TC-F	4.5 or 4*	4**	
24	TC-L/TC-F	4.5	4	
34	TC-L/TC-F	4.5	4	
36	TC-L/TC-F	4.5	4	

*) Two lamps connected to a ballast in series
 **) Applies to one lamp connected to a ballast or two lamps connected in series

Capacitors for discharge lamp circuits

Lamp		Compensation capacitor (µF ±10%)						
Output Type		220/230/240/252 V	220 V	380/400/420 V,	380 V/60 Hz			
W		50 Hz (µF)	60 Hz (µF)	50 Hz (µF)	60 Hz (µF)			
high-p	ressure	mercury vapour lamp o	ircuits		•			
50	HM	7	6					
80	HM	8	7					
125	HM	10	10					
250	HM	18	15					
400	HM	25	25					
700	HM	40	35					
1000	HM	60	50					
high-p	ressure	sodium vapour lamp ci	rcuits		·			
35	HS	6	5					
50	HS	8	8					
70	HS	12	10					
100	HS	12	10					
150	HS	20	16					
250	HS	32	25					
400	HS	45	40					
600	HS	65	55	25	20			
750	HS	70	60	25	25			
1000	HS	100	85					
metal ł	nalide le	amp circuits						
35	HI	6	5					
70	Н	12	10					
100	HI	12	10					
150	HI	20	16					
250	HI	32	25					
400	HI	35/45	35/45					
1000	HI	85	75					
2000	Н	125	125					
2000	HI			37	37			
2000	Н			60	60			
2000	HI			60	60			
2000	HI			100	100			